UV Coating

Motivation

There are several astrophysics science questions which require improved sensitivity from 100 nm to 120 nm.

There are three ways to achieve this need:

Better Detectors

Larger Aperture

Higher Coating Reflectivities

State of the Art

Fig. 1. Measured reflectance of an Al + MgF₂ mirror from 300 Å to 1500 Å. The MgF₂ thickness is 150 Å.

Fig. 2. Measured reflectance of an Al + MgF₂ mirror from 300 Å to 1600 Å. The MgF₂ thickness is 250 Å.

Figure C-3.3: Short Wavelength Cutoff as a function of MgF2 thickness

Fig. 7. Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 140 Å.

Fig. 8. Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 250 Å.

Figure C-3.4: Short Wavelength Cutoff as a function of LiF2 thickness.

W. R. Hunter, G. Hass, and J. F. Osantowski, "Reflectance of Aluminum Overcoated with MgF, and LiF in the Wavelength, Region from 1600 A to 300 A at Various Angles of Incidence," Appl. Opt. 10, 3 (1971).

Study

MSFC has examined several potential coating materials:

Li-Aluminum Alloy – developed for Space Shuttle and reportedly didn't form an oxide layer.

Ga-Aluminum Alloy – reportedly very reactive to water because it does not form an oxide layer – too soft to polish.

Chemical Conversion Layer AlF Overcoat

Ultra Thin Chemical Conversion Layers For Ultra Violet Applications

Cydale C. Smith

Howard J. Foster Center for Irradiation of Materials
Alabama A&M University Research Institute
P.O. Box 313
Normal, Alabama, 35762-0313

Introduction

• There is a need for robust UV optical coatings with acceptable optical and mechanical properties with minimum optical absorption.

Objectives

- Dense continuous layers
- Minimized absorption
- Self-limiting reaction.

Intellectual Property

- MFS-32333-1 "Ultra Thin Protective Layer By Chemical Conversion for Vacuum Ultra-Violet Optics Applications".
- Shapiro, Smith and Thompson

State of The Art

Disadvantages

- Optical Absorption for Oxide layer
- Optical Absorption form MgF
- Poor coating integrity

Chemical Processing

$$AI + 6HF \rightarrow AIF3 + 3H2$$

Conversion Process

Improvement

Advantages

- 10 angstrom Oxide layer converts to AlF₃
- AlF₃ is on the order of 10 to 20 angstrom
- Good Coating integrity

Summary

- First samples have been processed
- Samples are being tested for reflectivity

Acknowledgements

- NASA-MSFC-P. Stahl
- NASA-GSFC-R. Keski-Kuhe

END Thank you

Initial Results

WL(NM)	sept 28 08	March 30 200	9	8-Jun	
		A E	3	1	2
116.2	0.007	0.018	0.025	0.039	0.047
121.6	0.019	0.014	0.021	0.058	0.07
143.5	0.115	0.011	0.013	0.12	0.145
152	0.177	0.012	0.011	0.146	0.17
160.8	0.274	0.015	0.011	0.174	0.202
175	0.422	0.018	0.01	0.212	0.241
200	0.557	0.049	0.021	0.254	0.282
300			0.126		